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“ Description of the Project (team1l)

| Open/Close | | Print |

The intention of our project was to get to know the basics of Mathematica and to use the
program in the following.

For this we got a short introduction into Mathematica an continuatively an exercise we had
to solve with our knowledge.

The main focus was on the approximation of functions with the aid of Taylorpolynoms.

To this we approximated at first simple polynoms and later a sinus function. Concluding we
build the difference between the original and the approximated function.

ﬂ Brainstorming and Theory
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| Open /Close | | Print|

Brainstorming

Open / Close

- to approximate a sinus function we should use polynoms
- first approximation must be a parallel line to the x- axis
- to get a more exact approximation the degree of the polynominal function

has to be higher

What Mathematics do we need:

Open / Close

1. In our project we worked with function, plots and tables.
Clear [f, x 1;
Input ~ X
f [X_] =@
eX

Clear [fTable, x 7;
start = =-3;
stop = 3;

Input » step = 0.5;

data = Table [{x,f [x] // N}, {x, start, stop, step }1 // Chop;
MDShowTable [data, {"x" ,f [x] }1;
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X et
-3 |10.0497871
—-2.5] 0.082085
-2. | 0.135335
-1.5| 0.22313
-1. | 0.367879
—-0.5] 0.606531
0 1.
0.5 1.64872
1. 2.71828
1.5 | 4.48169
2. 7.38906
2.5 12.1825
3. 20.0855

Input > MDPlot [{f [X] }, {x, -2,1 x.3}]

-2 -15 -1 -0.5
- Graphics -

2. Also we used derivation.

Clear [f, x 1;
f[x_]:=x"5 +5x" +0.7 x"3

| t
nput ~ £ [x]

0.7x 3 +5x%+x°

f' [Xx]
" [x]
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fr [X]
DIf [X], {X, 4 }]

21x ?2+20x3 +5x*
42x +60x%+20x3
42 +120x +60x?2
120 + 120 x

Developing Models
| Open/Close | | Print]

Approximation  of a polynominal
function:

Open / Close

Input »>

Input ~

Input ~

We chose the polynominal function f[x]= —x + 0.5 X2 +0.5x>
and want to approximate the function on the point xO0.

Clear [f, x 1;
x0 = -1
Expand [f [X_] =X (0.5 x+1) (Xx-1)]

-1

-Xx +05x 2+05x 3

The name of our approximated function is pO.
At first the degree of p0 is 0, also the function is a parallel to x-axes.

Clear [pO, x 1;
pO[X_]1 =a

a

pO[x_1=1

1
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Input ~

Input ~>

Input ~>

MDPIlot [{f [x], pO [x]1}, {x, -5, 51}, PlotRange - {-5,51},
Epilog - { Red, PointSize [0.025 ], Point [{-1,f [-1]3}] 1} ]

y
4 L
2 L
/ / )
-4 2 2 4
-2\
—4
- Graphics -
- MDRealOnly|
Clear [a];
Solve [{f [x0] = pO[x]}, {a}]
{{}}

The next degree is 1. We want to find the tangent line with this degree.

Clear [pl, x I;
Clear [a, b 1;
PLIX ] =axx+Db

b+ax

- MDRealOnly|
Clear [a, b T;
Solve [{f [x0] == pl[x0], f" [xO0] == pl" [xO13}, {a, b }]
pl[x_]1 =-0.5 »x+0.5

{{a-»-05b -05}}
0.5 -0.5x
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Clear [a, b 1;

nout MDPIlot [{f [x], p1l [x]}, {x, -5, 51}, PlotRange - {-5,51},
put = Epilog - { Red, PointSize [0.025 ], Point [{-1,f [-1]3}] 1} ]
Null

- Graphics -

Now we want to find the curveness with the degree 2.

Clear [p2, X 1;
Input » Clear [a, b,c 1;
P2[X_] =a*x"2 +bxx+cC

c+bx +ax?

- MDRealOnly|
Clear [a, b,c 1;
Input > gelve [{f [x0] == p2[x0],

f* [x0] == p2' [xO], f* [xO0] == p2" [x013}, {a b,c }]
P2[X_] =-1%x"2 -25 %»x -0.5

{{a-»-1,b -»-251c¢ --051}}
-0.5 -25x -x?

Clear [a, b,c 1;

— MDPIot [{f [x], p2[x]1}, {x, -5, 5}, PlotRange - {-5,51},
P Epilog - { Red, PointSize [0.025 ], Point [{-1,f [-1]3}]} ]
Null

Site: www.deltasoft.at M@th Desktop



Thursday, April 15, 2010 projekti_pdf2.nb

y

4 L

2 L

X
-4 2 2 4
-2t
4t
- Graphics -
5. In the third degree the functions are the same, because f[x] has the degree 3.

Clear [p3, X 1;

Input » Clear [a, b,c,d ]
pP3[X_] =a*x"3 +b*x"2 +Cc*xx+d

d+cx +bx2+axd

- MDRealOnly|
Clear [a, b,c,d T;
Input > Solve [{f [x0] == p3[x0], f'" [xO] == p3" [x0],

f* [x0] == p3" [x071,f" [x0] == p3™ [x01}, {a b,c,d 1}]

P3[x0] = 0.5 #x"3 +0.5 »x 2 -1xx - 1.1102230246251565"  +"-16
{{a»05b -05¢c --1,d --111022 x107'°}}

-1.11022 x10°% _x +05x 2+05x 3

Clear [a, b,c,d 1;

MDPIot [{f [x], p3 [X]1}, {x, -5, 5}, PlotRange - {-5,51},
Epilog - { Red, PointSize [0.025 ], Point [{-1,f [-1]3}]}]

Null

Input ~
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-2t
4t
- Graphics -
Approximation  of a sinus

function:

Offnen / SchlieRen

6. The function we want to approximate is f[x]=Sin[x].

Clear [f, x 1;
Input > x0 =1

f[x_1:=Sin [X]

1

Input > pO[x_] =a

a

- MDRealOnly|

d

Clear [a];
Solve [{f [x0]
pO[x] = Sin [1]

Input ~

{{a > Sin [1]}}
Sin [1]

MDPIlot [{f [x], pO [Xx1}, {x,

= pO[x]}, {a}]

Input » Epilog - { Red, PointSize  [0.025 ], Point

-5, 513}, PlotRange - {-5,51},

[{1,f [11}1}]

Site: www.deltasoft.at

M@th Desktop



Thursday, April 15, 2010 projekti_pdf2.nb

Input ~>

Input ~

Input ~

y

4 +

2 L

: X
~4 =2 2 \4\'
-2t
—4 ¢
- Graphics -

Clear [pl, X I;
Clear [a, b 1;

PLIX ] =axx+Db
b+ax

Solve [{f[x0] == pl[x0], f" [xO0] == pl" [xO13}, {a, b }1]
pl[x] = Cos[1l] *x - Cos[1] + Sin [1]

a="f"[1]

b =f"[1] +f[1]

{{a->Cos[1l],b » -Cos[1] +Sin [1]}}
-Cos[1l] +xCos[1] + Sin [1]

Cos[1]

0

MDPIot [{f [x], p1l [x]}, {x, -5, 5}, PlotRange - {-5,51},
Epilog - { Red, PointSize [0.025 ], Point [{1,f [1]3}]11}]
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2t
—4t
- Graphics -
Clear [p2, X 1;
Input » Clear [a, b,c 1;
P2[X_] :=a*x"2 +bxx+cC

- MDRealOnly|
Clear [a, b,c 1;
{a,bc }y={abc 3} /.

Input ~ Flatten @Solve [{f [x0] == p2[x0], f' [x0] == p2' [x0],
f* [x0] == p2" [x0]1}, {a b,c }1;
P2 [x]
Null
Sin [1] 1, )
-Cos[1] + - Ex Sin [1] +x (Cos[1] +Sin [1])
f'[1]
a=—
2
b="f[1]+f[1]
f[1
c= o)+
2

Null

Ut MDPIlot [{f [x], p2 [x]1}, {x, -5, 51}, PlotRange - {-5,51},
puat > Epilog - { Red, PointSize [0.025 ], Point [{1,f [1]13}]1}1;
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y
4 L
2 L
‘ X
-4 =2 2
2t
—4t
Clear [p3, X 1;
Clear [a, b,c,d ]
Input ~
P3[X_] :=a*x"3 +b*Xx"2 +cxx +d
p3[x]

d+cx +bx2+axd

- MDRealOnly|
Clear [a, b,c,d 1;

{a,b,c,d }={ab,c,d } /. Flatten e

Input ~> Solve [{f [x0] == p3[x0], f'" [xO0] == p3' [x0],f" [x0] ==
p3" [x07, f" [x0] == p3™ [x0]1}, {a b,c,d }1;

p3 [x]
Null

1 1 .
—Ex3 Cos[1] + Ex2 (Cos[1] - Sin [1]) +

1 1
Ex (Cos[1l] +2Sin [1]) + r (-5Cos[1] +3Sin [1])

b=-1 (F2]+[2])
2
1

o= (F[L]+2*1])

dz-; (5*F[1]+3*[1])
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MDPlot [{f [x1, p3 [X]}, {x, -5, 5}, PlotRange - {-5,51},
Epilog - { Red, PointSize [0.025 ], Point [{1,f [1] }] } 1]

y

A

-2t
—4 ¢
- Graphics -
Clear [p4, x 1;
Clear [a,b,c,d, e ]
Input ~
PAIX_]1 :=a*x +b*xX"3 +Cc*X"2 +dxx +e
p4 [X]
e+dx +cx?+bx3+ax?
- MDRealOnly|
Clear [a, b,c,d, e T;
{a, b,cde }={a b,cd e } /.
Flatten @Solve [{f [x0] == p4[x0], " [x0] == p4"' [x07],
f* [x0] == p4" [x0], f™ [XO] == p4™ [x0],
|npUt > f [XO] == p4"“ [XO] }! {a1 b! C, d’ e } ]1
Sin [1] 1 _
p4[Xx] = * X4+ 5 (-Cos[1] -Sin [1]) *x"3 +
1 .
7 (2Cos[1] -Sin [1]) *X"2 +
1 _ 1 .
r (3Cos[1] +5Sin [1]) *X + > (-20Cos [1] +13Sin [1])
1 _ 1 _ 1 .
—x3 (-Cos[1] -Sin [1]) + — x? (2Cos[1] - Sin [1]) + — x* Sin [1] +
6 4 24
1 1
gx (3Cos[1] +5Sin [1]) + 7 (-20Cos[1] +13Sin [1])
nout MDPlot [{f [x]1, p4 [x]}, {x, -5, 5}, PlotRange - {-5,51},
nput = Epilog - { Red, PointSize [0.025 ], Point [{1,f [1]3}]1}1;
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Clear [p5, x 1;
Input ~ Clear [a, b, c,d, e g ]
P5[X_]1:=a*X"5 +b*Xx" +Cc*x"3 +d*X"2 +exX +(

- MDRealOnly|
Clear [a, b, c,d, e g 1,

{a, b,cde,qg }={a b,cd e g } /. Flatten e
Solve [{f[x0] == p5[x0], f'" [x0] == p5' [x0],

Input »>
f* [x0] == p5" [x07, f™ [X0] == p5™ [x0],
fr [X0] == p5™ [x0], (D[f [x], {X,53}] /.x =->1) ==
(D[pS[X]1 {X75}] /'X_>1) }l {a,b,c,d,e,g }]l
pS [X]
Null
! x® Cos[1] ! x%2 (5Cos[1] -3Sin [1])
_— + — - +
120 12
! x3 (-Cos[1] - 2Sin [1]) ! x* (-Cos[1] +Sin [1])
—_— - - + — - + +
12 24
1
zx (13Cos[1] +20Sin [1]) + 0 (-101Cos [1] +65Sin [1])
MDPlot [{f [x1, p5 [Xx]}, {x, -5, 5}, PlotRange - {-5,51},
Input ~

Epilog - { Red, PointSize [0.025 ], Point [{1,f [1] }] } 1]
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-2t
4|
- Graphics -
Difference between the original i P -
function and the approximated function: - ‘

Offnen / SchlieRen m \

Now we want to know the difference between the approximation and the
function, because they are only in one point identical.

Clear [f, x, n, k, c 1;

c=2
X0=1
n=1
k=1

Input > f [x ] :=Sin [x]

K, DIf [x], {X, :
t[z_1:= [t ] {X:'}]/X_)XO (X =-Xo)" /. x >z

>S5
1
o

t [X]
Input » Abs[f [c] -t [c]] //N
This is our result of the difference.
Input ~ f [c]

Input > t [2]

8. Now we have to choose the higher degree of the polynominal function.

Site: www.deltasoft.at M@th Desktop 14
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Clear [f, x,n, k, c 1,

c=2

Xo=1

n=2

k=2

f[x_1:=Sin [X]
&, DIf :

t[z_ ]:= [TIx], (6N}l /X > Xo (X =-X0)" /. X 52
— n!

t [Xx]

Input » Abs[f [c] -t [c]] //N

The difference between the two functions is lower when the degree is higher.

o) Now we have to choose the higher degree of the polynominal function again.

Clear [f, x,n, k, c 1,

c=2
Xo =1
n=3
k=3

Input > f [x ] :=Sin [x]

K. D[f [X], {X,n }] /. X= Xo

n!

(X =-Xo)" /. x >z

—
—

N
|
—_

1]

>S5
1
o

t [X]

Input » Abs[f [c] -t [c]] //N

10. Now we chose a really high degree of the polynominal function.

Clear [f, x, n, k, c 1;

c=2
Xg =1
n =100
k =100

Input > f [x ] :=Sin [x]

Site: www.deltasoft.at M@th Desktop 15
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K DIf [X], {X,n }]/.X > X
tiz_1:= y —~ 0

(X =-%X0)" /. X >z
n=0

t [X]
Input » Abs[f [c] -t [c]] // N

Now the degree is high enough!

Clear [f, x, n, k, c 1;

c=2
X0=l
Input ~
f[x_]:=Sin [X]
. DIf .
t[z_]:= Z [TIXT, N3l /7.X > Xo (X =Xo)" /. x>z

!
noo nl

Input > g[n_]:=Abs[f[c]-t[c]] //N

start = 0;

stop = 10;

step = 1;

Input ~
data = Table [{n, g [n] // N}, {n, start, stop, step }1 // Chop;
MDShowTable [data,
{"n is the degree of the approximated function” )
"Difference from f [c] and t [c]" }1;
nis the degree of the approximated function | Difference from f[c]

0 0.0678264
1 0.472476
2 0.0517404
3 0.03831
4 0.00324872
5 0.0012538
6 0.0000850877
7 0.0000221152
8 1.24534x107°
9 2.43589x 107’
10 1.17022x 1078
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E’ Our Team and Experiences
| Open /Close | | Print|

Jere Junttila (Vihanti, Finland)

Miina Honkala (Vihanti, Finland) (] F t
Angela Briick (Dormagen, Germany) . d
Frederike Franken (Dormagen, Germany) | I 1 *\

Open / Close
Our experiences with the ' P “—L

project:

T~

In the time of our project we made a lot of new experiences.

For example our journeys to Finland and accordingly to Germany where we lived in host
families were a highlight.

During our visit in Vihanti/Dormagen we worked on our Mathematica project. It was very
exciting to work with Mathematica instead of the ordinary mathematic lessons. We learned

something about the handling with the program and solved our exercise successful. It was
a great time for all of us...

Description of the Project (team?2)
- | Open/Close | | Print |

The aim of our project was to find a way to define a Taylorpolynominal.
With the help of the approximation of polynominals and the sinus-function, the difference
between Taylorpolynominals and the original function can be calculated.
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g Brainstorming and Theory
| Open/Close | | Print]

Brainstorming

Open / Close

To get a Taylorpolynominal you need to start with the approximation of polynominal
function of a low degree.

The results of these approximations can be assigned to the approximation of any function
included the sinus-function.

This will lead us to find a way to define a Taylorpolynominal and so it is the basic idea of
forming a Taylorpolynominal.

What Mathematics do we need

Open / Close

We made use of folowing mathematics:
- addition, subtraction, multiplication and division
- derivation

g Developing Models
| Open /Close | | Print|

Part 1.1: Solve of the approximation
of a polynominal function

Open / Close

Input » Clear [f, x0, x 1;
f[X_ 1 :=3x"3 -5x"2 +7
x0 = 2;

Derivation
Input » f [x0]
Input > f' [x0]

Input > f* [x0]
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Input » "  [x0]
Input » " [x0]
Solve p0

Clear [p0, X, a 1;
Input ~>
pO[x_] :=a

Clear [a]

Switch —» Pure Solve;
Clear [x];
Input ~ (a} = {ay} /.
Flatten [Solve [{f [x0] == pO[x07]}, {a} 11;

PO [X]
Graph f[x] and pO[X]
Input » MDPIlot [{f [x], pO [X]1}, {x, -5,51}, PlotRange - {-1, 12} ]
This is just a straight line through the point pO.

Solve pl

Clear [pl, x,b,c 1;

Input ~>
pPl[X_] :=b=xx+cC
Clear [b, c ]
Switch - PureSolve;
Clear [Xx];

Input > {P, ¢} =(bc}/

Flatten [

Solve [{f[xO0] == pl[x0], f" [xO] == pl"' [xO13}, {b,Cc }11;

pl[x]
Graph f[x] and p1[X]
Input » MDPIlot [{f [x], pl [Xx]1}, {x, -5,51}, PlotRange - {-1, 12} ]

This is the tangent line and it shows the gradient at the point pO.

Solve p2
Clear [p2, X, d,e,i 1
Input ~> .
P2[X_ ] :=d*X"2 +e*X +I

Site: www.deltasoft.at M@th Desktop 19
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Clear [d, e, i ]

Switch - Pure Solve;
Clear [x];

Input > {d. e, i }={d e i 1}/
Flatten [Solve [{f [x0] == p2[x0],
f' [x0] == p2' [x0], f* [x0] == p2" [x01}, {d,e, i }11;

P2 [x]
Graph f[x] and p2[X]
Input » MDPIlot [{f [X], p2 [X]1}, {x, -5,51}, PlotRange - {-1, 12} ]

This graph shows the curvature at the point pO.

Solve p3

Clear [p3, X, j, k1,1, m 1;

Input ~ .
P3[X_1 =] *X"3 +mM2% X2 +| *X +m
Clear [j, m2,l,m ]
Switch —» Pure Solve;
Clear [x];
g, m2, Im 3}y={,m2,I,m 1} /.

Input > Flatten [Solve [

{f[x0] == p3[x0], " [xO0] == p3' [x0], " [xO0] == p3" [x0],
f [XO] == p3™ [xO071%3}, {jm2,I,m 3}11;

p3[x]
Graph f[x] and p3[X]
Input >~ MDPIot [{f [x], p3 [X]1}, {X, -5,5}, PlotRange - {-1,12 }]

The function p3 has the same degree as the original function has. The approximation for
the function f(x) is completed now.

-

Part 1.2: Movie

Open / Close

This movie shows that the approximation get more and more accurate with an increasing
of the degree of the polynom.

More... ;
Clear [j, v, a, k 1;
great [j _,y _]:=

Site: www.deltasoft.at M@th Desktop 20
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D[f , , 13 : 0
Expand[z( [T [Xx], {X,18}]7.x ->x0)

- *(x-xo)“] /. X>j //N

y
3=0

(*» enter your f *)

MDMovie[ MDPlot [{f [x] /. X »j, great [j,y 1},
{jy -4,61}, PlotRange - {0, 12 3},

Background - $MDNotebookBackground, PlotLabel -
"y = " <>ToString [NumberForm [y, {5,3 }1]<>"n" 1, {y,0,3,1 }]
Part 1.3: Comparison of the —
coefficients of the approximations p0 - ! P\'

p5 of the function f ﬂ"l -
i

The first approximation of f is just the function value of f at the point x0.
pl
f* [x0]
Input > pl[x]
pl[x] - pO[Xx]
Input > Expand [f' [X0] % (X =x0)]

The result of p1-p0 is the product of the first derivation of f at the x value x0 and (x-x0).
That is = f[x0]*(x-x0). We subtract both approximations because there is the same
constraint in both orders, which says that the function value of p0 and p1 at x0 has to be
the same. If we add pO we ought to get the function we got when we solved the function
the way we did in chapter 1.1 (f[x0]+f'[x0]*(x-x0)).

Input > f [x0] +f" [X0] » (X -X0)
p2
f* [x0]
Input > p2[X]
P2 [x] - pl[x]
Input > Expand [f* [X0] % (X -X0)]

This does not work the way we did it above because we need x2 in the formular so we
have to put it into brackets and square the bracket.

Input > Expand [f* [x0] % (X -x0)"2]
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This is not the result we are looking for; but we see by comparing this result to the result of
p2-pl that this is two times the result of p2-p1. Now we will divide the hole term by 2.

f* [x07] % (X —xO)"Z]
2

Now we have exactly the same result like 3 steps before.

Input > Expand [

[XO] » (X =x0) "2
5 ]

This is the function of p2 evaluated in a different way than in 1.1.

f
Input > Expand [f [X0] +f [X0] % (X -x0) +

p3
f [x0]

pP3[x]
Input > p3[x] - p2[X]

[XO] » (X =x0) "2
5 ]

Now we can see that we have got exactly the same problem like above. We try to change
the exponent to 3 to get x°.

fo
Expand [

[XO] » (X -=x0) "3
; )
Now we have got x3 but all the coefficients are not right.

If we compare the coefficients of x3 we can see that there is a 3 in the original term and a 9
in the one above. But 9 divided by 3 is 3 so we try to divide the term above by 2 times 3.

flll
Input > Expand [

[X0] = (x—xO)"3]

flll
Input »~ Expand [ 53
*

And now we get the right function so we can see that this formular is right and if we add
the terms of p2, p1 and p0O we should get the function of f because we reached the degree
of f and p3 is equal to f.

Expand [f [XO] +f" [xXO0] » (X -x0) +

Input f' [X0] % (X =x0)7~2 " [xO]# (x -%x0)"3 ]
+
2 2%3

If we look at this funktion we can see that the second summand can also be written as
f'[x0] (X = x0)"1 ) ) f"[x0] x (x — x0)"2
and the third summand can be written as and the
1 1«2
) f"'[x0] x (x — x0)"3 ) )
fourth summand can be written as . The first summand can be written as
1%2%3

f[x0]x (x-x0)"0.

If we look at the denominators of the 3 terms we see 1, 1*2 and 1*2*3. This can be shorten
to 1!, 2! and 3! and the number in front od the ! is always the number of the derivation. We
can also see that the exponent of (x-x0) is the number of the derivation.
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Part 2.1:Solve of the approximation of (l F\,
e

a sinus function

ﬁi\‘

approximation at point z of f[x]=sin[x]
Clear [k, x, x0 ]
Input > K[Xx_]:=Sin [X]
X0 = 3;

Solve t0

Clear [tO, x, al ]
Input ~
t0 [x_]:=al

- MDRealOnly|
Clear [x, p0, al 1;

{al} = {al} /.

Flatten [Solve [{k[x0] == t0O [x0]}, {al} 1]

Input ~

Graph k[x] and tO[x]

Input > Plot [{k[x],t0 [x1}, {X, -2m 2 x}, PlotRange - {-2,2 }]
This is just a straight line through the point pO.
Solve t1[x]

Clear [t1, b1, cl1 ]
Input ~
t1 [X ]1:=blx +cl
Clear [x, bl,cl1 ]
{bl,cl } = {bl,cl } /.
Flatten [Solve [{k[x0] ==t1 [x0], k' [x0] ==t1" [x071}, {bl,cl }11;
tl [X]

Input ~

Graph k[x] and t1]x]

Input > Plot [{k[x],t1 [x]}, {X, -2 2 =}, PlotRange - {-2,2 }]
This is the tangent line and it shows the gradient at the point pO.
Solve t2[x]

Clear [t2, x, d1,el, il ]

Input
P2 [X ]:=dlx?+elx +il
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Clear [d1,el,il,x ]
{di1,el,il } ={dl,el,il 1} /.
Flatten [Solve [{k[x0] =1t2 [x0], k' [x0] =t2' [x0],
k" [x0] =t2" [x071}, {di,el,il 3}11;t2 [X]

Input ~>

Graph k[x] and t2[x]

Input > Plot [{k[X],t2 [Xx]}, {X, -2 2 =}, PlotRange - {-2,2 }]
This graph shows the curvature at the point pO.
Solve t3[x]

Clear [t3,]1, 12,11, ml ]

Input
PR s X 1:=j1x3+12x 2+I11x +ml

Clear [j1, 12,11, m1, x ]
{1, 12,11, m1 } = {j1,12,11, ml1 } /.
Input > Flatten [
Solve [{k[x0] ==t3 [x0], k' [x0] =t3' [x0],k" [x0] =1t3" [x0],
k™ [x0] =1t3™ [x01}, {j1,12,11, m1 }11;t3 [X]

Graph k[x] and t3[x]
Input > Plot [{k[x],t3 [Xx1}, {X, -2 2 x}, PlotRange - {-2,2 }]
Solve t4[x]

nout Clear [t4, nl, ol, p1, g1, r1, X ]

nput >

P 4 X 1 :=nlax 4 + 0L #X"3 + Pl #x”2 +ql «X + 11
Clear [nl, ol, p1, g1, rl, x ]
{nl, 01, pl,qlrl } = {nl, 01, pl,ql, rl } /.

Flatten [
Input ~
Solve [{k[x0] =14 [xO0], k' [x0] ==t4"' [xO], k" [xO] =t4" [x0],
k™ [xO0] =t4™ [x07, k™ [XO] = t4™ [x01},

{n1, o1, p1,9l, r1 311 t4 [X]
Graph k[x] and t4[x]
Input > Plot [{k[x],t4 [Xx1}, {X, -2m 2 x}, PlotRange - {-2,2 }]
Solve t5[x]

Clear [t5, s1, ul, vl, wl, z1, hl, a2, x ]

Input ~
t5 [X 1 :=S1l*X"5 +uUl *x™ +V1 #X"3 +WlxXx"2 +hl +x +2z1

Clear [s1, ul, vi, wl, z1, h1, x ]
{s1, ul, vl, wil, z1, hl } = {s1, ul, vil, wi, z1, hl } /.

Input & Flatten [
Solve [{k[x0] ==t5 [x0], k' [x0] =t5' [xO0],k" [xO0] =t5" [x0],
k™ [x0] =1t5" [x07, k" [XO] == t5"" [x01,
k™" [XO] =t5"™" [xO0713}, {s1,ul,vl, wl, z1, hl }11: 15 [X]
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Graph k[x] and t5[x]
Input > Plot [{k[x],t5 [Xx1}, {X, -2 2 x}, PlotRange - {-2,2 }]

input & Clear [t6, s2, u2, v2, w2, z2, h2, a3, x ]
6 [X_]:=S2%X"6 +U2 *X"5 +V2 *X" +W2xX"3 +h2 *X"2 +22 »X + a3
{s2, u2, v2, w2, z2, h2, a3 } = {s2, u2, v2, w2, z2, h2, a3 } /.
Flatten [
input & Solve [{k[x0] =16 [x0], k' [x0] =1t6" [x0], k" [x0] =t6" [x0],
k™ [x0] =t6" [x07, k™ [XO] == t6™" [x01,
k™ [XO] ==t6"" [x07, k"™ [XO] == t6"™" [X01}3,
{s2, u2, v2, w2, z2, h2, a3 }11;t6 [X]

Graph of k[x] and t6[x]
Input » Plot [{k[X],16 [Xx]}, {X, -2 2 x}, PlotRange - {-2,2 }]

The graphs of the functions t3 to t6 show that the approximation gets more accurate the
higher the degree of the function is.

Part 2.2: Movie {| F I
S

Open / Close ‘
This movie shows how the approximation get more and more accurate.

More... ;
Clear [X,z,n 1;
polynom [z ,n ] :=

N (D[k , , B : 0
Expand[z( [xx] {XB}]/X_)X)*(X_XO)B] /. X -z //N
=0 !

Input & (*» enter your f *)

MDMovie[ MDPIlot [ {polynom [z, n ], Sin [z]},
{z, -2x, 2}, PlotRange - {-2.1, 2.1},
Background - $MDNotebookBackground, PlotLabel -
"n = " <>ToString [NumberForm[n, {5,3 }1]<>"n" 1, {n,0,5 1 }]
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Part 2.3: Compare of the coefficients
of the approximations of the sinus
function

Open / Close

t0

k[x0]

Input
put = t0 [x]

The first approximation is just the function value of the original function

t1

We will try to use our results from 1.3 to see if it works at this function, too.

k' [x0]
tl [X]
Input >~ t1 [x] -t0 [X]
Expand [k' [X0] = (X -x0) ]
k[x0] + Expand [K' [X0O] » (x -=x0) ]

We can see that our result from 1.3 works for the second approximation.

t2

Now we try it for the next approximation.

k" [x0]
t2 [X]
2 [x] -t1 [X]
[XO] » (X -=x0) "2
5 )

Input ~ k"
b Expand [

k" [x071 * (x—xO)"Z]
2

k[x0] + Expand [k' [x0] * (x -x0) ] + Expand [

We can see this works for the second approximation as well as for the third
approximation.

We will not try this with all the approximations we as did in chapter 2.1. We will just try it
with the tenth approximation.

Clear [ab, b5, c5, d5, e5, 5, g5, h5, i5, |5, k5, t10 ]
t10 [X_]:=a5*Xx"10 + b5 *x"9 +c5 X8 +d5 xX"7 +

€5 xX"6 +f5 *X"5 +g5 *Xx"4 +h5 *Xx"3 +i5 *X"2 +j5 »X +k5
{a5, b5, c5, d5, e5, 5, g5, h5, i5, |5, k5 } =

{a5, b5, c5, d5, e5, 5, g5, h5, i5, j5, k5 } /.

Site: www.deltasoft.at M@th Desktop 26



Thursday, April 15, 2010 projekti_pdf2.nb

Flatten [Solve [{k[x0] ==t10 [x0], k' [x0] ==1t10" [x0],
k" [x0] =t10" [x07], k™ [x0] ==t10" [x01,

k™ [xO] = t10™ [X07, k™" [XO] == t10"" [x07,
k"™ [xO] == t10™" [x07, k™™ [xO] == t10""" [x01],
ke [xO] == t10™™"" [xO7], k™™ [X0] ==
t10Mm” [x07, k™™ [XO] == t10™™" [XO1}3,
{a5, b5, cb, d5, e5, 5, g5, h5, i5, j5, k5 }11;t10 [x]

Expand [k[xO] +K’ [x0] (X -x0) +
k® [x0] (x -x0)3 k®[x0] (x -x0)*
+ +

1 2
Ek”[xO] (X -x0)“ +

2x%x3 41

Iput > 1 (5) [x0] (x - x0)5 k©® 0] (X -x0)°® kD 1x0] (x - x0)7 .
51 6! 7!

k@ [x0] (x -x0)® k®[x0] (x -x0)° k@ [x0] (x -x0)*?°
8! " 91 " 10!

Now we can see that the new way produces the same result like the old way.

E’ Result and Summary
| Open /Close | | Print|

Section 1.1: Taylor

Open / Close

Now we look for a shorter way to write this term :

Simplify[
f[x0] + f'[x0] = (X — X0) + PO (X -x0)72 | IX01+ (X~ x0)"3  T"DOT(x—x0)™4
2 2%3 4!
"' [X0]* (X —x0)"5  F""[x0]«(x—X0)"6 """ [x0)*(X—XO)"7
51 6! 7!
f X0l « (x = x0)"8 ™" [x0] x (x = x0)"9 """ [x0] + (X — x0)"10
8! * 9! i 10! ]

We can see this is a sum. So now we will try to write this with a }; to get a shorter term.

We will define the number of derivation as a.
N, f@[x0]

(X — x0)?

!
a=0 a!
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Now we will compare these two results to check if the new term is the right term to
approximat functions.

1
k[x0] + Expand [k’ [X0] (x - x0) ] + Expand [5 k" [x07] (X —xO)z] +

k@ [x0] (x -x0)23; k() [x0] (x -x0)%;
Expand [XV] ¢ ) + Expand [XV1 ¢ ) +
L 2x3 . L 41 .
-k ®) [x0] (x -x0)°%; -k (® [x0] (x -x0)¢;
Expand [XV1 ¢ ) + Expand [XV1 ¢ ) +
Input > - 51 . . 6! .
k(M [x0] (x -x0) 7 - -k ® [x0] (x -x0)8;
Expand [ ]7 ( ) + Expand [ ]8 ( ) +
L ! i L ! d

k© [x0] (x -x0)° k19 [x07] (x -x0)*°

Expand [ 9 ] + Expand [ 0 ]
Clear [n, 3]
n =10;
Input ~ n
D[k , , B X =>X0
Expand [Z (DIK[xT, {x,[5}]7.x ->Xx0) *(x-xO)B]
= 1

Plot [{Expand [i (Oik[x], {(x B3] /.x ->X0) * (x—xO)“] /.X >t
=0

Input ~ Bt

K[X] /. X —>t}, {t, -2 2 x}, PlotRange - {-2, 2 }]

If we compare the results we can see that the second term gives the same result as the
first term; but it is shorter.

This is the Taylor term to approximate any function at a point in its domain.

Section 1.2: Taylor approximation at {i F )
any point with any function. -

ml

In this chapter you can create a Taylorpolynominal with any function you like.

Clear [U,y0,n, B ]
U[x_1:=Sin [X] *e"2 X (=xenter your function *)
yO: =2 (xenter your point as y0 *)

Input ~> n: =10

(xenter your n this is the number of approximation *)

1, (D[u , , B . 0
Expand [Z( [urx1, {x, 831 7.x -»y0)
3=0

X *(x—yO)B]
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Section 2.1: Accuracy of a
Taylorpolynominal

Open / Close

We defined the Taylorpolynominal as a function "polynom" depending on z (difference to
the approximated point) and n(Degree of the Taylorpolynominal). Then we defined the
function "diff"* which is depending on n and u (z changed into x0+u). "Diff" is the absolute
value of the original function k and and the Taylorpolynominal at the point xO+u.

Clear [n]
polynom [z_,n _]:=
no(Drkx1, {x, R /. X »Xx0
Input > Expand[z( [KIX], { } - X0)
R=0

- *(x—xO)B] /. X -z //N
!

diff [n_,u ] :=Abs[k[x0 +u] - polynom [xO +u,n 1] // N

Here we created the table to compare the differences of both functions at different points
on the left and the right side of the approximation. This shows the accuracy of the
approximation.

More... ;
start = 0;
stop = 10;
step = 1;
Input > data = Table [{n, diff [n, -27,diff [n, -17,diff [n, 17,
diff [n, 271 // N}, {n, start, stop, step }1 // Chop;
MDShowTable [data, {"n" , "Diff in x =x0-2\n x0 =3",
"Diff in x =x0-1\n x0 =3",
"Diff in X =x0 +1\n x0 =3",
"Diff in x  =x0+2\n x0 =3"1}1;
n Diff in x=x0-2 | Diff in x=x0-1 | Diff in x=x0+1 | Diff in x=x0+2
x0=3 x0=3 x0=3 x0=3
0 0.700351 0.768177 0.897923 1.10004
1 1.27963 0.221815 0.09207 0.879941
2 0.997394 0.151255 0.16263 1.16218
3 0.322596 0.0137437 0.00236875 0.157809
4 0.228516 0.00786368 0.00824875 0.251889
5 0.035482 0.000386262 1.18497 x107° 0.0121087
6 0.022938 0.000190262 0.000197185 0.0246527
7 0.00220466 6.16492x 10°° 7.57894%x 107" 0.000489941
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8 0.00130866 2.66491x10°° 2.74211x 1078 0.00138594
9 0.0000881569 6.32391x 1078 1.39527x 1078 0.0000108737
10 0.0000483347 2 43502% 1078 2.49362x 1078 0.000050696

This table shows the difference of both functions on the left and the right sides of the
approximated function and thus the accuracy of the Taylorpolynominal.

You can see that the differences are minor:

There is only a difference of 32/100 at the point x0-2 when the degree of the function is 3
and 15/100 at the point x0+2.

When the degree is ten there is only a difference of 5/100000 to both sides.

Section 3.1: Use of
Taylorpolynominals

Open / Close

Taylorpolynominals are used to explain the Bernoulli-Effect (stochastics) and the derivation
of the sentence of L"Hospital. Furthermore, it is used in calculators.

'.3 Our Team
| Open /Close | | Print|

Participants N
!

Soqa
™A

Participants:

Uta Geratz, Bettina-von-Arnim-Gymnasium, Dormagen, Germany
Carl Philip Heising, Bettina-von-Arnim-Gymnasium, Dormagen, Germany

Reetta Lumiaho, Vihannin lukio, Vihanti, Finland
Leena Luikko, Vihannin lukio, Vihanti, Finland
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Description of the Project (team?3)
— Open/Close Print

The topic of this project is to find a proper way to approximate every kind of a function with
a polynomial function.

The idea behind this is, that it is very easy to analyze a polynomial function, e.g. the root of
the function, the maxima and minima or the limit. But there are many different functions in
mathematics, e.g. exponential functions, logarithm functions, sine and cosine functions
and many more.

We want to develop an accurate formula with an as small as possible error, which allows
to display any function as an polynomial function, to make the analysis of the function
easier.

q Brainstorming and Theory
= Open/Close Print

Brainstorming
| Open/CIose|

Our goal is to develop a formula to approximate any function with a polynomial function. To
do that we first need a general polynomial function without values, e.qg. f(x)=

ax®+bx%+cx+d.

Then we have to compare different values of the function we want to approximate with our
polynomial function. We can check the values on different positions and we can also check
the values of the derivations of the function, because the values of the derivations of the
function, which we want to approximate, have also to be the same as the values of the
derivations of the polynomial function.

For the first try it is a good idea to approximate any polynomial function with another
polynomial function. Because we are approximating a polynomial function, our function has
to be in the end the same as the polynomial function, we are approximating.
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= %

Our task in this section is to make a approximation of a polynomial function. To find the
polynomial function, which is going to approximate the given function we have to compare
the values of the functions, as well as the values of the derivations of the functions.

We need to know how to calculate function values. We need to know how to create
derevations of functions.

To see the results in a graphic we need to know how to plot our functions into a coordinate
system.

It is possible, that we will need more mathematics after we find out, how the approximation
works.

What mathematics do we need?
| Open/CIose|

Approximation  of a polynomial
function

|Open/CIose|

We are trying to approximate a polynomial function with another polynomial function.

1. We are looking for a polynomial which has the same function value like f(x) at xO.

Clear [f, x,x0 1;
Input » X0 = 2;
fI[x ] :=5x"3 -7x"2 +4x"1 -3

Now we plot the function f(x).
Input > MDPlot [{f [x]}, {X, -5, 5} 1;

The new function has to be a polynomial function of degree 0. The name is pO.

Input > Clear [pO0, x, a0 1];
pO[x_] :=a0

Clear [a]

Switch —» Pure Solve;
Input > clear [x, a0 1;
{a0} = {a0} /.
Flatten [MDRealOnly [Solve [{f [x0] == pO[x0] }, {a0} 111

We have now solved the value of a0. Itis 17. So pO(x)=17
Now we plot f(x) and the new function.

Input > MDPIlot [{f [x], pO [x1}, {x, -5, 5} 1;

The taylor-polynomial of the zeroth degree have the same value as the functuin f(x) at the
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point x0.

2. The next approximation is the tangent line at xO.

The new function has to be a polynomial function of degree 1. The name is p1.

Clear [pl, al, bl, x 1;

Input
put = PLx_]:=al xx +Dbl

- Pure Solve]|
Clear [al, bl ];
{al, bl } ={al, bl } /. Flatten [MDRealOnly [

Solve [{f[xO0] == pl[x0], f [xO] == pl' [xO]3}, {al, bl }11]

Input ~

We have now solved the value of al and bl. They are 36 and -55. So p1(x)=36x-55
Now we plot the two functions.

Input >~ MDPIlot [{f [x], pl [x1}, {x, -2, 5}1;

The first taylor-polynomial hase the same slope as the function f(x).

3. We are doing this for the next polynomial degrees.

The new function has to be a polynomial function of degree 2. The name is p2.

Clear [a2, b2, c2, x ]

| t
bl P2[X_]:=a2 *X"2 +b2 xX +C2

- Pure Solve|

Clear [x, a2, b2, c2 1;

Input > (532 b2, c2 } ={a2, b2, c2 } /.Flatten [

MDRealOnly [Solve [{f [x0] =p2[x0], f' [x0] == p2' [x07],
f* [x0] == p2" [x071 13}, {a2, b2,c2 } 111

We plot both functions.
Input > MDPIlot [{f [x], p2 [x1}, {x, -2, 5} 1;

The second taylor-polynomial give us the curveness of f(x)
The next one is a polynomial function of degree 3. The name is p3.

Clear [a3, b3, c3, d3, x ]

| t
bl P3[X_]:=a3*X"3 +b3 xXx"2 +¢c3 *x +d3

Clear [x, a3, b3, c3, d3 1;
{a3, b3,c3,d3 } ={a3, b3,c3,d3 } /. Flatten [
Input » MDRealOnly [Solve [
{f[x0] == p3[x0], f" [xO0] == p3' [xO7],f" [xO0] ==p3" [x0],
fr [XO] == p3™ [x071 3}, {a3,hb3,¢c3,d3 3}1]11]
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We plot both functions.
Input > MDPIlot [ { X, ,» 0+

The new function is equal to f(x). The approximation is done. The degree of the taylor-
polynomial is the same as the degree of f(x).

Input > MDPIlot [{ X, » 0 1

We plot all taylor-polynomials in one coordinate system.

Section: Comparison of Coefficients i P \.._‘
| Open /Close| .

4. We are now trying to find a structure in the build of a taylor-polynomial

We compare the coefficients of the taylor-polynomial with the derivations of the function to
find a formula how to create a taylor-polynomial.

The coefficient of the zeroth taylor-polynomial is the function at the point xO.

f* [x0]
Input »~
pl[x]

The first derivation at the point x0 is the value of the coefficient with the x of the first taylor-
polynomial. To analyse only the second summand of the taylor-polynomial we subtract the
zeroth taylor-polynomial from the first.

Input > pl[x] - pO[x]

36 is the value of the first derivation at the point x0. -72 is this value multiplicated with -2.
We now do the same for the next approximation.

f*  [x0]
Input > p2[X]
P2 [X] - pl[x]

The coefficient with the x? is the value of the second derivation of the function at the point
x0 devided by 2. The coefficient of the x is the value of the second derivation of the
function multiplicated with 2x, the linear part is the value of the second derivation of the
function devided by 2 and then multiplicated with 4. We continue our analysis.

fr [x0]
Input > pP3[X]
p3[x] - p2[Xx]
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The coefficient of the x3-part is the value of the third derivation of the function at the point

X0 devided by 6. The x2-part is the value multiplicated with x2. The next one is the value
multiplicated with 2x. The last one is the value devided by 6 multiplicated with 8.

You can see a structure in it. The coefficient of the part with the highest degree is created
through building the n-derivation at the point x0 and then devide it with the faculty of n (n!).

f(M[x0]
n!
(x - x0)". n is the degree of the taylor-polynomial. To get the taylor-polynomial you have to
sum up all the taylor-polynomials of lower degrees. So to get the third taylor-polynomial
f(M[x0]

To get the other coefficients the experssion is multiplicated with the experssion

you have to sum up the expression (X —x0)" for n={0;1;2;3}. Therefore the
n!

Vo]

formula for the taylor-polynomial is Z

i=0

x (X —x0)".

n!

g Developing Models
Open/Close Print

Section: Transfer
| Open/CIose|

In this section we are going to transfer the results from the second section on a different
kind of function, to see if the formula we develop still works with this functions.

We will take an exponential function and approximate it with our polynomial function.
Because the polynomial function is only an approximation we are going to calculate the
error rate between the exponential function and the polynomial function. With this
information we will find out how many approximations are necesarry to get a proper result.

Section: Approximation of a
exponentional function

| Open /Close|

We now approximate a exponentional function with a taylor-polynomial. For that purpose
we are doing the same action as in the first part.

Clear [g, X 1;
Input > g[x_] :=e"
x0: =2

Input » Clear [sO, x, a0 1;
sO[x_] :=a0
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Switch - Pure Solve;
Clear [x, a0 71;
{a0} = {a0} /.
Flatten [MDRealOnly [Solve [{g[x0] == sO[x071}, {a0} 111

We start again with a polynomial of the zeroth degree and continue to increase the
degree, until we get a good approximation.

Input » MDPIot [{g[x],s0 [x]}, {x, -5,5 }1;

Clear [s1, al, b1, x 1;

Input
put = S1[x_] :=alxx+bl

- Pure Solve|
Clear [al, bl 71;
{al, bl } ={al, bl } /.Flatten [MDRealOnly [

Input ~

Solve [{g[x0] == s1[x0], g' [xO0] == sl' [xO07 3}, {al, bl } 111

Input > MDPIlot [{g[x],sl [x]1}, {x, -5,5 1}1;

Clear [a2, b2, c2, x ]

Input ~
S2[X_]1:=a2%*x"2 +b2xx +cC2

- Pure Solve|

Clear [x, a2, b2, c2 1;

Input > (32 b2, c2 } ={a2, b2, c2 } /.Flatten [

MDRealOnly [Solve [{g[x0] ==s2[x0], g' [x0] == s2' [x07,
g" [x0] == s2" [x0713}, {a2, b2,c2 3111

Input > MDPIlot [{g[x],s2 [x]1}, {x, -5,5 1}1;

Clear [a3, b3, c3, d3, x ]

| t
nput = S3[X_]1:=a3 *x"3 +b3 *x"2 +c3 xx +d3

Clear [x, a3, b3, c3, d3 1;
{a3, b3,c3,d3 } ={a3, b3,c3,d3 } /. Flatten [
Input ~ MDRealOnly [Solve [
{9[x0] == s3[x0], g' [x0] == s3" [x0],9g" [xO] ==s3"
g" [x0] ==s3" [x013}, {a3,b3,c3,d3 }11]

Input » MDPIot [{g[x],s3 [x]}, {Xx, -5,5 }1;

Clear [x, a4, b4, c4, d4, e4 ]

Input
. SA4[X 1 :=ad X +Db4 +x"3 +Cc4 x*X"2 +d4 xX +e4
- Pure Solve|
Clear [x, a4, b4, c4, d4, e4 1;
nt ~ 84, b4, c4, d4, ed} = (a4, b4, c4, d4, ed} /. Flatten [
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Input ~

Input »

Input »

Input »

Input ~

Input »

Input ~

MDRealOnly [Solve [{g[x0] == s4[x0], g' [x0] == s4' [x0],
g" [xO0] ==s4" [x071,9g"™ [X0] ==s4™ [x0],

g™ [X0] ==s4™ X013}, {a4, b4, c4, d4, e4 } 111
MDPlot [{g[x], s4 [x]}, {x, -5,51}1;
Clear [x, ab, b5, c¢5, db5, €5, f5 ]

S5[X_]1:=a5*X"5 +b5*x"4 +c5 *x"3 +d5 *xx"2 +e5xx +f5

— Pure Solve|

Clear [x, ab, b5, c¢5, db5, e5, f5 1;
{a5, b5, c5, d5, e5, f5 } = {ab, b5, c5, d5, e5, f5 } /. Flatten [

MDRealOnly [Solve [
{9g[x0] == s5[x0], g' [x0] == s5' [x0],9g" [xO0] ==s5" [x0],
g" [x0] ==s5™ [x071,g" [X0] ==s5"  [x0],
g [X0] ==s5"" [xO1}, {ab, b5, c5,d5, e5, 5 } 111
MDPlot [{g[x],s5 [x]}, {x, -5,5 }1;
Clear [x, a6, b6, c6, d6, e6, f6, g6 ]

S6[X_]:=abxX"6 +b6 *xx"5 +C6 *x"4 +d6 xx"3 +e6 *xx"2 +f6 »X + Qg6

— Pure Solve|

Clear [x, a6, b6, c6, d6, e6, 6, g6 1;
{a6, b6, c6, d6, eb, 6, g6 } =
{a6, b6, c6, d6, eb, 6, gb } /. Flatten [

MDRealOnly [Solve [{g[x0] == s6[x07],
(Dlo[x], {x,1 3] /.x ->x0) == (D[s6[x], {X,13}]/.x »x0),
(DIOg[x], {X,23}]/.x ->x0) == (D[s6 [X], {X,2 }] /.X =Xx0),
(DIg[x], {X,33}]/.x ->x0) == (D[s6 [X], {X,3}]/.x »x0),
(DIg[x], {X,43}] /. x->x0) == (D[s6 [X], {X,4 }] /. x->x0),
(D[g[x], {X,53}]/.x ->x0) == (D[s6 [X], {X,53}] /.x =»x0),
(DIg[x]1, {X,6 }] /.x ->x0) == (D[s6 [X], {X,6 }] /.X -Xx0)},
{ a6, b6, c6, d6, e6, 6, g6 } 111

MDPlot [{g[x],s6 [x]}, {x, -5513}1;
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As the degree of the taylor-polynomial increase the approximation becomes more
accurate. With a high degree the function values in the envirorment of the approximate
value x0 have only a small difference in comparison to the value of the approximated
function.

The difference to the approximation of a polynomial function is, that the taylor-polynomial
will not be the same as the approximated function. With each degree the approximation
becomes more accurate, but to reach the approximated function you have to calculate the
taylor-polynomial infinitely.

More... ;
Clear [tay,n 1;
tay [n_]: =

Sum[ ((D[g[X], {X, 1 }]/1i 1) /.x -x0) (x-x0)"i, {i,0,n 3}1;
Input ~
MDMovie[ MDPlot [ {g[x], tay [n]},
{X, -2m, 2}, PlotRange - {{-2,4 1}, {-1,7 }},
Background - $MDNotebookBackground, PlotLabel -
"n = " <>ToString [NumberForm[n, {5,3 }1]<>"n" 1, {n,0,6,1 }]

In this movie you can see how the approximation becomes more accurate step by step.

Section: Difference of the both
function
| Open/CIose|

We first define a function with which we can calculate the value of any point of an taylor-
polynomial for any function.

tay [z_,n _]:=

Input ~> . . . .
Sum[ ((D[g[x], {X, 1 }]/1 1)y /.x »>x0) (x-x0)", {i,0,n }]/.X »2

Then we define a function which solve the absolute value of the difference of the
approximated function and the taylor-polynomial in a certain point.
Input >~ difference [j _,n_1:=Abs[g[x0 +j]-tay [XO +j,n 1] //N

Now we table the results.

More... ;
Clear [difference, X, j, n 1;
difference [j _,n_1:=Abs[g[x0+]]-tay [XO +j,n 1] //N
start = 0;
stop = 15;
Input ~ step = 1;
data = Table [{xq, difference [2, xq], difference [-2, xq] // N3},
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{xq, start, stop, step }1 7/ Chop;
MDShowTable [data, {"Taylor -Polynominal degree" ,
"Difference at x0 +2", "Difference at x0 -2"11;

Taylor—Polynominal degree Difference at x0+2 Difference at x0-2

0 47.2091 6.38906

1 32.431 8.38906

2 17.6529 6.38906

3 7.80079 3.46302

4 2.87476 1.46302

5 0.904342 0.507396

6 0.247537 0.149409

7 0.0598788 0.0382498

8 0.0129642 0.0086648

9 0.00253871 0.00176068
10 0.000453614 0.00032442
11 0.0000745055 0.0000546882
12 0.0000113208 8.49651x 107°
13 1.60004x 107° 1.22421x107°
14 2.11362x 107 1.64461x 107’
15 2.62054x 1078 2.06953x 1078

In this table you can see the degree of the taylor-polynomial and the difference of the
approximated function and the taylor-polynomial at the points x0-2 and x0+2. The
approximated function is the exponentional functuon f(x)= ¢*. The point x0=2.

'j’ Result and Summary
Open/Close Print

Section: Approximation of any function
with a polynomial function

|Open/Close|

n_ M
With the formula Z

i=0
function f(x). n is a natural and gives the degree of the taylor-polynomial. x0 is the point at
which you calculate the derivations of the function. n! is 1*2*3*4*...*n. To calculate a taylor-
polynomial of the nth degree you have to sum up all taylor-polynomials from 0 to n.

«(x —x0)" you can calculate the taylor-polynomial for any
n!
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Section: Use of the taylor-polynomial ' F \.‘,

| Open /Close| \ d
1mi

The taylor-polynom is used in normal calculators. The calculations which a normal
calculator can do well is multiplication, devision, addition and subtraction. So if a calculator
calculates e.g. the value of a sinus, it just uses a taylor-polynomial to calculate this value.

I-.' Our Team
Open/Close Print
Participants

Our team consisted of two Finnish students, Mikko Huhtala and Anu Sandvik, and two
German students, Jens Schatten and Mark Smoliar.

Our Experience with the '] P \-.,.,

Project

.
|Open/CIose| | Iﬁ ‘4

This project was an interesting event. It was exciting to work with students from another
country on a mathematical topic. Another interesting aspect of the project was, that there
was a meeting in Finland as well as in Germany, so we get to know the country of the
other students. It was a bit complicated to work all the time in English, because no one of
us was used to it, but we managed this problem as well and in the end completed our task
in the project.
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6 Picture of the whole group
| Open/Close | | Print|

Teachers of the group: Wolfgang Breivogel, Ari Tranberg.

Students: Jere Junttila, Miina Honkala, Angela Brick, Frederike Franken,

Uta Geratz, Carl Philip Heising, Reetta Lumiaho, Leena Liukko, Mikko Huhtala, Anu
Sandvik, Jens Schatten and Mark Smoliar.

Also in the picture: Mr. Schieren ( headmaster of the Bettina-von-Arnim-Gymnasium in
Dormagen Germany ).
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